翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

State (controls) : ウィキペディア英語版
State-space representation

In control engineering, a state-space representation is a mathematical model of a physical system as a set of input, output and state variables related by first-order differential equations. "State space" refers to the space whose axes are the state variables. The state of the system can be represented as a vector within that space.
To abstract from the number of inputs, outputs and states, these variables are expressed as vectors. Additionally, if the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.〔
〕〔

The state-space method is characterized by significant algebraization of general system theory, which makes possible to use Kronecker vector-matrix structures. The capacity of these structures can be efficiently applied to research systems with modulation or without it.
The state-space representation (also known as the "time-domain approach") provides a convenient and compact way to model and analyze systems with multiple inputs and outputs. With p inputs and q outputs, we would otherwise have to write down q \times p Laplace transforms to encode all the information about a system. Unlike the frequency domain approach, the use of the state-space representation is not limited to systems with linear components and zero initial conditions.
== State variables ==

The internal state variables are the smallest possible subset of system variables that can represent the entire state of the system at any given time. The minimum number of state variables required to represent a given system, n, is usually equal to the order of the system's defining differential equation. If the system is represented in transfer function form, the minimum number of state variables is equal to the order of the transfer function's denominator after it has been reduced to a proper fraction. It is important to understand that converting a state-space realization to a transfer function form may lose some internal information about the system, and may provide a description of a system which is stable, when the state-space realization is unstable at certain points. In electric circuits, the number of state variables is often, though not always, the same as the number of energy storage elements in the circuit such as capacitors and inductors. The state variables defined must be linearly independent, i.e., no state variable can be written as a linear combination of the other state variables or the system will not be able to be solved.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「State-space representation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.